

2018-2019 M.TECH VLSI IEEE TITLES

S.No	TITLES	Year
	VLSI	
1	Approximate Quaternary Addition with the Fast Carry	2018
	Chains of FPGAs	
2	A Low-Power Configurable Adder for Approximate	2018
	Applications	
3	A Low-Power High-Speed Accuracy-Controllable	2018
	Approximate Multiplier Design	
4	A Low-Power Yet High-Speed Configurable	2018
	Adder for Approximate Computing	
5	A Simple Yet Efficient Accuracy- Configurable Adder	2018
	Design	
6	Adaptive Approximation in Arithmetic Circuits: A	2018
	Low-Power Unsigned Divider Design	

CEGON TECHNOLOGIES (We Rise By Lifting Others)

7	Approximate Hybrid High Radix Encoding for	2018							
	Energy-Efficient Inexact Multipliers								
8	A Cost-Effective Self-Healing Approach for Reliable 2018								
	Hardware Systems								
9	Approximate Sum-of-Products Designs Based on	2018							
	Distributed Arithmetic								
10	Design and Evaluation of Approximate Logarithmic	2018							
	Multipliers for Low Power Error-Tolerant								
	Applications								
11	Design, Evaluation and Application of Approximate	2018							
	High-Radix Dividers								
12	Efficient Fixed/Floating-Point Merged Mixed-	2018							
	Precision Multiply-Accumulate Unit for Deep Learning								
\	Processors								
13	Enhancing Fundamental Energy Limits of Field-	2018							
	Coupled Nano computing Circuits								
14	Exploration of Approximate Multipliers Design	2018							

CEGON TECHNOLOGIES (We Rise By Lifting Others)

	Space using Carry Propagation Free Compressors	
15	Inexact Arithmetic Circuits for Energy Efficient IOT	2018
	Sensors Data Processing	
16	Low-Power Addition With Borrow-Save Adders	2018
	Under Threshold Voltage Variability	
17	Novel High speed Vedic Multiplier proposal	2018
	incorporating Adder based on Quaternary Signed	
	Digit number system	
18	On the Difficulty of Inserting Trojans in Reversible	2018
	Computing Architectures	
19	Optimizing Power-Accuracy trade-off in Approximate	2018
	Adders	
20	Power Efficient Approximate Booth Multiplier	2018
21	Reducing the Hardware Complexity of a Parallel	2018
	Prefix Adder	
22	Systematic Design of an Approximate Adder: The Optimized	d 2018

22	Systematic Design of an Approximate Adder: The Optimized	2018	ì
	Lower Part Constant-OR Adder		ı

CEGON TECHNOLOGIES (We Rise By Lifting Others)

S.NO	PROJECT NAME	YEAR			
1	A 4096-Point Radix-4 Memory-Based FFT Using DSP Slices	2017			
2	A Bit-Plane Decomposition Matrix-Based VLSI Integer Transform Architecture for HEVC	2017			
3	An Efficient O(N) Comparison-Free Sorting Algorithm	2017			
4	An Improved DCM-Based Tunable True Random Number Generator for Xilinx FPGA	2017			
5	Clock-Gating of Streaming Applications for Energy Efficient Implementations on FPGAs	2017			
6	Design of Efficient BCD Adders in Quantum-Dot Cellular Automata	2017			
7	Design of Efficient Multiplierless Modified Cosine-Based Comb Decimation Filters: Analysis and Implementation				
8	Design of Power and Area Efficient Approximate Multipliers	2017			
9	Efficient Hardware Implementation of Probabilistic Gradient Descent Bit-Flipping	2017			
10	High-Speed Parallel LFSR Architectures Based on Improved State-Space Transformations	2017			

CEGON TECHNOLOGIES (We Rise By Lifting Others)

11	Improved 64-bit Radix-16 Booth Multiplier Based on Partial Product Array Height Reduction	2017
12	LFSR-Based Generation of Multicycle Tests	2017
13	Overloaded CDMA Crossbar for Network-On-Chip	2017
14	Probabilistic Error Modeling for Approximate Adders	2017
15	Probability-Driven Multibit Flip-Flop Integration With Clock Gating	2017
16	Reliable Low-Latency Viterbi Algorithm Architectures Benchmarked on ASIC and FPGA	2017
17	RoBA Multiplier: A Rounding-Based Approximate Multiplier for High-Speed yet Energy-Efficient Digital Signal Processing	2017

CEGON TECHNOLOGIES (We Rise By Lifting Others)

18	Scalable Approach for Power Droop Reduction During Scan-Based Logic BIST	2017
19	Sign-Magnitude Encoding for Efficient VLSI Realization of Decimal Multiplication	2017
20	Weighted Partitioning for Fast Multiplierless Multiple-Constant Convolution Circuit	2017
21	A General Digit-Serial Architecture for Montgomery Modular Multiplication	2017
22	A Memory-Based FFT Processor Design With Generalized Efficient Conflict-Free Address Schemes	2017
23	A Structured Visual Approach to GALS Modelling and Verification of Communication Circuits	2017
24	Area-Efficient Architecture for Dual-Mode Double Precision Floating Point Division	2017

CEGON TECHNOLOGIES (We Rise By Lifting Others)

25		2017
	Area-Time Efficient Architecture of FFT-Based Montgomery Multiplication	
26	Digit-Level Serial-In Parallel-Out Multiplier Using Redundant Representation for a Class of Finite Fields	2017
27	DLAU: A Scalable Deep Learning Accelerator Unit on FPGA	2017
28	Energy-Efficient VLSI Realization of Binary64 Division With Redundant Number Systems	2017
29	High-Throughput and Energy-Efficient Belief Propagation Polar Code Decoder	2017
30	LLR-Based Successive-Cancellation List Decoder for Polar Codes With Multi bit Decision	2017

CEGON TECHNOLOGIES (We Rise By Lifting Others)

31	Low-Latency, Low-Area, and Scalable Systolic-Like Modular Multipliers for GF(2m) Based on Irreducible All-One Polynomials	2017
32	On the VLSI Energy Complexity of LDPC Decoder Circuits	2017
33	Reconfigurable Constant Multiplication for FPGAs	2017
34	An Improved Design of a Reversible Fault Tolerant LUT-Based FPGA	2017
35	Flexible DSP Accelerator Architecture Exploiting Carry-Save Arithmetic	2017

Dear Sir/Madam,

☐ This	is	to	inform	that	CEGON	TECHNOLOGIES	is	providing
IEEE/LI	VE/A	APPI	LICATION	N/CUS	TOMIZED	PROJECTS in Kavali	i.	

 $\hfill\Box$ Trained More than a 5000 students successfully , of various colleges.

☐ More than 7 years experience in Academic Projects Development for All Departments (M.Tech, B.Tech, MCA, MSc, Degree & Diploma).

Why Only CEGON.....!!!!

CEGON TECHNOLOGIES (We Rise By Lifting Others)

☐ More than 7 Years Industrial Experienced Faculty.
☐ You Will be get real time experience with 100 % Out put Results.
☐ you will be provided with valuable certification for Course.
☐ Practical exposure to advanced technologies.
☐ Platform to apply theoretical concepts.
☐ Back and front end programming support
☐ High application oriented training.
PROJECT SUPPORT TO REGISTERED STUDENTS
1) IEEE Base paper.
2) Abstract Document.
3) Future Enhancement (based on Requirement).

CEGON TECHNOLOGIES (We Rise By Lifting Others)

- 4) Modified Title / Modified Abstract (based on Requirement).
- 5) Complete Source Code.
- 6) Final Report / Document
- 7) Review PPTS and Documents.
- 8) How to Run execution help file(Video File).
- 9) International Journal Publication based on your project.
- 10)Complete Documentation According To College Format

CEGON TECHNOLOGIES (We Rise By Lifting Others)